MATH 512, FALL 14 COMBINATORIAL SET THEORY WEEK 11

Theorem 1. (Magidor-Shelah) Suppose that $\left\langle\kappa_{n} \mid n<\omega\right\rangle$ in an increasing sequence of supercompact cardinals, $\kappa_{\omega}=\sup _{n} \kappa_{n}$ and $\mu=\left(\sup _{n} \kappa_{n}\right)^{+}$. Then the tree property holds at μ.

Proof. Let T be a μ-tree. The proof has two rounds. First we will show that for some n, there is a "weak subtree" whose levels are of size at most κ_{n}. Then we will use the supercompactness of κ_{n+1} to construct an unbounded branch through that weak subtree. We will denote the nodes of the tree by $u=\langle\alpha, \delta\rangle$, where $\alpha<\mu$ indicates the height (i.e. level) of u and $\delta<\kappa_{\omega}$. In other words, for every $\alpha<\mu$, the α-th level of the tree is

$$
T_{\alpha}=\left\{\langle\alpha, \delta\rangle \mid \delta<\kappa^{+\omega}\right\}
$$

Lemma 2. There is an unbounded $I \subset \mu$ and $n<\omega$ such that for all $\alpha, \beta \in I$ with $\alpha<\beta$, there are $\xi, \delta<\kappa_{n}$ such that $\langle\alpha, \xi\rangle<_{T}\langle\beta, \delta\rangle$.
Proof. Let $j: V \rightarrow M$ be a μ-supercompact embedding with critical point κ_{0}. Then $j(T)$ is a tree of height $j(\mu)$ and levels of size at most $j\left(\kappa_{\omega}\right)$. Note that $\rho:=\sup j " \mu<j(\mu)$. Let $u \in j(T)_{\rho}$. Since $j(T)$ is a tree, for all $\alpha<\mu$, there is a node $u_{\alpha} \in j(T)_{j(\alpha)}$, such that $u_{\alpha}<_{j(T)} u$. Denote $u_{\alpha}=\left\langle j(\alpha), \xi_{\alpha}\right\rangle$, where $\xi_{\alpha}<j\left(\kappa_{\omega}\right)=\sup _{n} j\left(\kappa_{n}\right)$. Then there is some $n_{\alpha}<\omega$, such that $\xi_{\alpha}<j\left(\kappa_{n_{\alpha}}\right)$. Let $f: \mu \rightarrow \omega$ be $f(\alpha)=n_{\alpha}$. Since μ is regular (both in V and M), there is some unbounded $I \subset \mu$ and $n<\omega$, such that $n=n_{\alpha}$ for all $\alpha \in I$.

We claim that I and n are as desired. For if $\alpha, \beta \in I$ with $\alpha<\beta$, then $u_{\beta}<_{j(T)} u$ and $u_{\alpha}<_{j(T)} u$. Since $j(T)$ is a tree, that implies that $u_{\alpha}<_{j(T)} u_{\beta}$. I.e. $M \models\left(\exists \xi, \delta<j\left(\kappa_{n}\right)\right)\left(\langle j(\alpha), \xi\rangle<_{j(T)}\langle j(\beta), \delta\rangle\right)$. Then by elementarity, in V, there are $\xi, \delta<\kappa_{n}$ such that $\langle\alpha, \xi\rangle<_{T}\langle\beta, \delta\rangle$.

Now we are ready to show that there is a branch through the tree. Let Let $j: V \rightarrow N$ be a μ-supercompact embedding with critical point κ_{n+1}. Let $\gamma \in j(I)$ be such that $\gamma \geq \sup j " \mu$. Note that then for all $\alpha \in I$, $N \models j(\alpha), \gamma \in j(I) ; j(\alpha)<\gamma$. Then for all $\alpha \in I$ by elementarity,

$$
N \models\left(\exists \xi, \delta<j\left(\kappa_{n}\right)=\kappa_{n}\right)\left(\langle j(\alpha), \xi\rangle<_{j(T)}\langle\gamma, \delta\rangle\right) .
$$

So, for all $\alpha \in I$, fix $\xi_{\alpha}, \delta_{\alpha}<\kappa_{n}$, such that $\left\langle j(\alpha), \xi_{\alpha}\right\rangle<_{j(T)}\left\langle\gamma, \delta_{\alpha}\right\rangle$. Consider $\alpha \mapsto \delta_{\alpha}$, which is a function from I to κ_{n}. Since μ is regular, there is some unbounded $J \subset I$ and $\delta<\kappa_{n}$, such that for all $\alpha \in J, \delta_{\alpha}=\delta$. Let $b:=\left\{\left\langle\alpha, \xi_{\alpha}\right\rangle \mid \alpha \in J\right\}$.
Claim 3. For all $\alpha<\beta$ with $\alpha, \beta \in J$, we have that $\left\langle\alpha, \xi_{\alpha}\right\rangle<_{T}\left\langle\alpha, \xi_{\alpha}\right\rangle$.

Proof. Fix such α, β. Since, in $N, j(T)$ is a tree and

$$
\left\langle j(\alpha), \xi_{\alpha}\right\rangle<_{j(T)}\langle\gamma, \delta\rangle, \text { and }\left\langle j(\beta), \xi_{\beta}\right\rangle<_{j(T)}\langle\gamma, \delta\rangle
$$

we have $\left\langle j(\alpha), \xi_{\alpha}\right\rangle<_{j(T)}\left\langle j(\beta), \xi_{\beta}\right\rangle$. By elementarity, $\left\langle\alpha, \xi_{\alpha}\right\rangle<_{T}\left\langle\beta, \xi_{\beta}\right\rangle$.
Then $\left\{u \in T \mid(\exists v \in b) u<_{T} v\right\}$ is an unbounded branch through T.

As discussed before, in order to have the tree property at κ^{++}for a singular strong limit κ, we must have failure of $S C H$ at κ. So, to get the tree property at both κ^{+}and κ^{++}, the next question of interest is obtaining the failure of SCH at κ together with the tree property at κ^{+}. Recall that weak square implies the existence of an Aronsjazn tree. Thus, we must first ask whether we can get failure of SCH at κ together with $\neg \square_{\kappa}^{*}$. This was solved in 2007 by Gitik and Sharon:

Theorem 4. (Gitik-Sharon) Suppose κ is supercompact. Then there is a generic extension in which, $\operatorname{cf}(\kappa)=\omega, S C H$ fails at κ and \square_{κ}^{*} also fails.

The proof of this theorem uses diagonal supercompact Prikry forcing. Let κ be supercompact, and let U be a normal measure on $\mathcal{P}_{\kappa}\left(\kappa^{+\omega+1}\right)$. For every n, let U_{n} be a normal measure on $\mathcal{P}_{\kappa}\left(\kappa^{+n}\right)$ obtained by projecting U. I.e. for every $A \in U$, let $A \upharpoonright n:=\left\{x \cap \kappa^{+n} \mid x \in A\right\}$ and set $U_{n}:=\{A \upharpoonright n \mid A \in U\}$. Write $x \prec y$ to denote $x \subset y$ and o.t. $(x)=\kappa_{y}:=\kappa \cap y$. We note that for every $n,\left\{x \mid \kappa_{x}\right.$ is a cardinal, o.t. $\left.(x)=\kappa_{x}^{+n}\right\} \in U_{n}$. So in the definition below assume that this is always the case.
Definition 5. \mathbb{P} consists of elements $p:=\left\langle x_{0}^{p}, \ldots, x_{n-1}^{p}, A_{n}^{p}, A_{n+1}^{p}, \ldots\right\rangle$, where:
(1) for $i<n, x_{i}^{p} \in \mathcal{P}_{\kappa}\left(\kappa^{+i}\right)$, and $x_{i}^{p} \prec x_{i+1}^{p}$,
(2) for $i \geq n, A_{i}^{p} \in U_{i}$.

The length of p is $\operatorname{lh}(p)=n$, and $\operatorname{stem}(p)=\left\langle x_{0}^{p}, \ldots, x_{n-1}^{p}\right\rangle$. For p as above, $q \leq p i f$:
(1) $\operatorname{lh}(q) \geq \operatorname{lh}(p)$, $\operatorname{stem}(p)$ is an initial segment of $\operatorname{stem}(q)$,
(2) for $\operatorname{lh}(p) \leq i<\operatorname{lh}(q), x_{i}^{q} \in A_{i}^{p}$,
(3) for $i \geq \operatorname{lh}(q), A_{i}^{q} \subset A_{i}^{p}$.
q is a direct extension of p, denoted by $q \leq^{*} p$, if $q \leq p$ and $\operatorname{lh}(q)=\operatorname{lh}(p)$.
Lemma 6. (The Prikry property) For every condition p and sentence in the forcing language ϕ, there is a direct extension $q \leq^{*} p$, such that q decides ϕ.

Corollary 7. \mathbb{P} does not add bounded subsets of κ.
Proof. Suppose that $\tau<\kappa$ and $p \Vdash \dot{a} \subset \tau$. Then for every $\beta \in \tau$, by the Prikry property, let $q_{\beta} \leq^{*} p$ be such that q_{β} decides " $\beta \in \dot{a}$ ". Let q be such that $\operatorname{stem}(q)=\operatorname{stem}(p)$ and for all $n \geq \operatorname{lh}(q), A_{n}^{q}=\bigcap_{\beta<\tau} A_{n}^{\beta}$. The latter is a measure one set since $\tau<\kappa$. So q is a condition which is stronger than every q_{β}. Then, in V define:

$$
b=\{\beta<\tau \mid q \Vdash \beta \in \dot{a}\} .
$$

It follows that $q \Vdash \dot{a}=b$.
That means that no bounded subsets can be added: if $a \in V[G]$ is a bounded subsets of κ, by the above argument there are densely many q 's such that for some $b \in V, q \Vdash \dot{a}=b$. So there is such a q in G. So, $a=b \in V$.

Corollary 8. Cardinals up to and including κ are preserved.
Lemma 9. \mathbb{P} had the $\kappa^{+\omega+1}$-chain condition.
Proof. Any two conditions with the same stem are compatible, and there are at most $\kappa^{+\omega}$-many possible stems. It follows that any antichain has size at most $\kappa^{+\omega}$.

Corollary 10. Cardinals greater than or equal to $\kappa^{+\omega+1}$ are preserved.
Next we will show that the cardinals in between are all singularized to have cofinality ω, and $\kappa^{+\omega}$ is collapsed to κ. Let G be \mathbb{P}-generic, and let $s^{*}=\bigcup_{p \in G} \operatorname{stem}(p)$. Then $s^{*}=\left\langle x_{n}^{*} \mid n<\omega\right\rangle$, where every $x_{n}^{*} \in \mathcal{P}_{\kappa}\left(\kappa^{+n}\right)$ and $x_{n}^{*} \prec x_{n+1}^{*}$.

Lemma 11. Suppose that $\left\langle A_{n} \mid n<\omega\right\rangle \in V$ is such that every $A_{n} \in U_{n}$. Then for all large $n, x_{n}^{*} \in A_{n}$.

Proof. Let $D=\left\{p \mid \forall n \geq \operatorname{lh}(p)\left(A_{n}^{p} \subset A_{n}\right)\right\}$. This is a dense set, because for any $p \in \mathbb{P}$, we can take $q \leq p$ in D, by setting $\operatorname{stem}(q)=\operatorname{stem}(p)$ and for all $n \geq \operatorname{lh}(p), A_{n}^{q}=A_{n}^{p} \cap A_{n}$.

Let $p \in D \cap G$. Then for all $n \geq \operatorname{lh}(p), x_{n}^{*} \in A_{n}$.

It turns out that this condition is not only necessary, but also sufficient for genericity. The proof is similar to the proof of the Prikry property.

Lemma 12. $\bigcup_{n} x_{n}=\kappa_{V}^{+\omega}$
Proof. Clearly $\bigcup_{n} x_{n} \subset \kappa_{V}^{+\omega}$. Suppose now that $\alpha<\kappa_{V}^{+\omega}$. Let $l<\omega$ be such that $\alpha<\kappa^{+l}$. For all $n \geq l$, let $A_{n}=\left\{x \in \mathcal{P}_{\kappa}\left(\kappa^{+n}\right) \mid \alpha \in x\right\} \in U_{n}$. By the above lemma for all large $n, x_{n}^{*} \in A_{n}$. That means that for all large n, $\alpha \in x_{n}^{*}$.

Let $\mu:=\kappa_{V}^{+\omega+1}$.
Corollary 13. In $V[G]$, for all $0 \leq n<\omega, \operatorname{cf}\left(\kappa_{V}^{+n}\right)=\omega$, and μ be comes the successor of κ

Proof. Every x_{k}^{*} is a set in V of size less than κ (although of course the sequence $\left\langle x_{n}^{*} \mid n<\omega\right\rangle$ is not in V). So for every $n<\omega$,

$$
\beta_{k}^{n}:=\sup \left(x_{k}^{*} \cap \kappa_{V}^{+n}\right)<\kappa_{V}^{+n}
$$

Then in $V[G]$,

$$
\kappa_{V}^{+n}=\left(\bigcup_{k} x_{k}\right) \cap \kappa_{V}^{+n}=\bigcup_{k} x_{k} \cap \kappa_{V}^{+n}=\sup _{k<\omega} \beta_{k}^{n}
$$

So, κ becomes a singular cardinal with cofinality ω, all of the κ_{V}^{+n} 's for $n>0$ are collapsed to κ, and μ becomes the new cardinal successor of κ.

