MATH 512, FALL 14 COMBINATORIAL SET THEORY WEEK 11

Theorem 1. (Magidor-Shelah) Suppose that $\langle \kappa_n | n < \omega \rangle$ in an increasing sequence of supercompact cardinals, $\kappa_{\omega} = \sup_n \kappa_n$ and $\mu = (\sup_n \kappa_n)^+$. Then the tree property holds at μ .

Proof. Let T be a μ -tree. The proof has two rounds. First we will show that for some n, there is a "weak subtree" whose levels are of size at most κ_n . Then we will use the supercompactness of κ_{n+1} to construct an unbounded branch through that weak subtree. We will denote the nodes of the tree by $u = \langle \alpha, \delta \rangle$, where $\alpha < \mu$ indicates the height (i.e. level) of u and $\delta < \kappa_{\omega}$. In other words, for every $\alpha < \mu$, the α -th level of the tree is

$$T_{\alpha} = \{ \langle \alpha, \delta \rangle \mid \delta < \kappa^{+\omega} \}$$

Lemma 2. There is an unbounded $I \subset \mu$ and $n < \omega$ such that for all $\alpha, \beta \in I$ with $\alpha < \beta$, there are $\xi, \delta < \kappa_n$ such that $\langle \alpha, \xi \rangle <_T \langle \beta, \delta \rangle$.

Proof. Let $j: V \to M$ be a μ -supercompact embedding with critical point κ_0 . Then j(T) is a tree of height $j(\mu)$ and levels of size at most $j(\kappa_{\omega})$. Note that $\rho := \sup j^{"} \mu < j(\mu)$. Let $u \in j(T)_{\rho}$. Since j(T) is a tree, for all $\alpha < \mu$, there is a node $u_{\alpha} \in j(T)_{j(\alpha)}$, such that $u_{\alpha} <_{j(T)} u$. Denote $u_{\alpha} = \langle j(\alpha), \xi_{\alpha} \rangle$, where $\xi_{\alpha} < j(\kappa_{\omega}) = \sup_{n} j(\kappa_{n})$. Then there is some $n_{\alpha} < \omega$, such that $\xi_{\alpha} < j(\kappa_{n_{\alpha}})$. Let $f: \mu \to \omega$ be $f(\alpha) = n_{\alpha}$. Since μ is regular (both in V and M), there is some unbounded $I \subset \mu$ and $n < \omega$, such that $n = n_{\alpha}$ for all $\alpha \in I$.

We claim that I and n are as desired. For if $\alpha, \beta \in I$ with $\alpha < \beta$, then $u_{\beta} <_{j(T)} u$ and $u_{\alpha} <_{j(T)} u$. Since j(T) is a tree, that implies that $u_{\alpha} <_{j(T)} u_{\beta}$. I.e. $M \models (\exists \xi, \delta < j(\kappa_n))(\langle j(\alpha), \xi \rangle <_{j(T)} \langle j(\beta), \delta \rangle)$. Then by elementarity, in V, there are $\xi, \delta < \kappa_n$ such that $\langle \alpha, \xi \rangle <_T \langle \beta, \delta \rangle$.

Now we are ready to show that there is a branch through the tree. Let Let $j: V \to N$ be a μ -supercompact embedding with critical point κ_{n+1} . Let $\gamma \in j(I)$ be such that $\gamma \geq \sup j^{n}\mu$. Note that then for all $\alpha \in I$, $N \models j(\alpha), \gamma \in j(I); j(\alpha) < \gamma$. Then for all $\alpha \in I$ by elementarity,

$$N \models (\exists \xi, \delta < j(\kappa_n) = \kappa_n) (\langle j(\alpha), \xi \rangle <_{j(T)} \langle \gamma, \delta \rangle).$$

So, for all $\alpha \in I$, fix $\xi_{\alpha}, \delta_{\alpha} < \kappa_n$, such that $\langle j(\alpha), \xi_{\alpha} \rangle <_{j(T)} \langle \gamma, \delta_{\alpha} \rangle$. Consider $\alpha \mapsto \delta_{\alpha}$, which is a function from I to κ_n . Since μ is regular, there is some unbounded $J \subset I$ and $\delta < \kappa_n$, such that for all $\alpha \in J$, $\delta_{\alpha} = \delta$. Let $b := \{ \langle \alpha, \xi_{\alpha} \rangle \mid \alpha \in J \}.$

Claim 3. For all $\alpha < \beta$ with $\alpha, \beta \in J$, we have that $\langle \alpha, \xi_{\alpha} \rangle <_T \langle \alpha, \xi_{\alpha} \rangle$.

Proof. Fix such α, β . Since, in N, j(T) is a tree and

 $\langle j(\alpha), \xi_{\alpha} \rangle <_{j(T)} \langle \gamma, \delta \rangle$, and $\langle j(\beta), \xi_{\beta} \rangle <_{j(T)} \langle \gamma, \delta \rangle$,

we have $\langle j(\alpha), \xi_{\alpha} \rangle <_{j(T)} \langle j(\beta), \xi_{\beta} \rangle$. By elementarity, $\langle \alpha, \xi_{\alpha} \rangle <_T \langle \beta, \xi_{\beta} \rangle$. \Box

Then $\{u \in T \mid (\exists v \in b) u <_T v\}$ is an unbounded branch through T.

As discussed before, in order to have the tree property at κ^{++} for a singular strong limit κ , we must have failure of SCH at κ . So, to get the tree property at both κ^+ and κ^{++} , the next question of interest is obtaining the failure of SCH at κ together with the tree property at κ^+ . Recall that weak square implies the existence of an Aronsjazn tree. Thus, we must first ask whether we can get failure of SCH at κ together with $\neg \Box_{\kappa}^*$. This was solved in 2007 by Gitik and Sharon:

Theorem 4. (*Gitik-Sharon*) Suppose κ is supercompact. Then there is a generic extension in which, $cf(\kappa) = \omega$, SCH fails at κ and \Box_{κ}^* also fails.

The proof of this theorem uses diagonal supercompact Prikry forcing. Let κ be supercompact, and let U be a normal measure on $\mathcal{P}_{\kappa}(\kappa^{+\omega+1})$. For every n, let U_n be a normal measure on $\mathcal{P}_{\kappa}(\kappa^{+n})$ obtained by projecting U. I.e. for every $A \in U$, let $A \upharpoonright n := \{x \cap \kappa^{+n} \mid x \in A\}$ and set $U_n := \{A \upharpoonright n \mid A \in U\}$. Write $x \prec y$ to denote $x \subset y$ and $o.t.(x) = \kappa_y := \kappa \cap y$. We note that for every n, $\{x \mid \kappa_x \text{ is a cardinal }, o.t.(x) = \kappa_x^{+n}\} \in U_n$. So in the definition below assume that this is always the case.

Definition 5. \mathbb{P} consists of elements $p := \langle x_0^p, ..., x_{n-1}^p, A_n^p, A_{n+1}^p, ... \rangle$, where:

(1) for i < n, $x_i^p \in \mathcal{P}_{\kappa}(\kappa^{+i})$, and $x_i^p \prec x_{i+1}^p$,

(2) for $i \ge n$, $A_i^p \in U_i$.

The length of p is h(p) = n, and $stem(p) = \langle x_0^p, ..., x_{n-1}^p \rangle$. For p as above, $q \leq p$ if:

(1) $\ln(q) \ge \ln(p)$, stem(p) is an initial segment of stem(q),

(2) for $\operatorname{lh}(p) \le i < \operatorname{lh}(q), \ x_i^q \in A_i^p$,

(3) for $i \ge \ln(q)$, $A_i^q \subset A_i^p$.

q is a direct extension of p, denoted by $q \leq^* p$, if $q \leq p$ and h(q) = h(p).

Lemma 6. (The Prikry property) For every condition p and sentence in the forcing language ϕ , there is a direct extension $q \leq^* p$, such that q decides ϕ .

Corollary 7. \mathbb{P} does not add bounded subsets of κ .

Proof. Suppose that $\tau < \kappa$ and $p \Vdash \dot{a} \subset \tau$. Then for every $\beta \in \tau$, by the Prikry property, let $q_{\beta} \leq^* p$ be such that q_{β} decides " $\beta \in \dot{a}$ ". Let q be such that stem $(q) = \operatorname{stem}(p)$ and for all $n \geq \operatorname{lh}(q)$, $A_n^q = \bigcap_{\beta < \tau} A_n^{\beta}$. The latter is a measure one set since $\tau < \kappa$. So q is a condition which is stronger than every q_{β} . Then, in V define:

$$b = \{\beta < \tau \mid q \Vdash \beta \in \dot{a}\}.$$

3

It follows that $q \Vdash \dot{a} = b$.

That means that no bounded subsets can be added: if $a \in V[G]$ is a bounded subsets of κ , by the above argument there are densely many q's such that for some $b \in V$, $q \Vdash \dot{a} = b$. So there is such a q in G. So, $a = b \in V$.

Corollary 8. Cardinals up to and including κ are preserved.

Lemma 9. \mathbb{P} had the $\kappa^{+\omega+1}$ -chain condition.

Proof. Any two conditions with the same stem are compatible, and there are at most $\kappa^{+\omega}$ -many possible stems. It follows that any antichain has size at most $\kappa^{+\omega}$.

Corollary 10. Cardinals greater than or equal to $\kappa^{+\omega+1}$ are preserved.

Next we will show that the cardinals in between are all singularized to have cofinality ω , and $\kappa^{+\omega}$ is collapsed to κ . Let G be \mathbb{P} -generic, and let $s^* = \bigcup_{p \in G} \operatorname{stem}(p)$. Then $s^* = \langle x_n^* \mid n < \omega \rangle$, where every $x_n^* \in \mathcal{P}_{\kappa}(\kappa^{+n})$ and $x_n^* \prec x_{n+1}^*$.

Lemma 11. Suppose that $\langle A_n | n < \omega \rangle \in V$ is such that every $A_n \in U_n$. Then for all large $n, x_n^* \in A_n$.

Proof. Let $D = \{p \mid \forall n \geq \ln(p)(A_n^p \subset A_n)\}$. This is a dense set, because for any $p \in \mathbb{P}$, we can take $q \leq p$ in D, by setting stem(q) = stem(p) and for all $n \geq \ln(p), A_n^q = A_n^p \cap A_n$.

Let $p \in D \cap G$. Then for all $n \ge \ln(p), x_n^* \in A_n$.

It turns out that this condition is not only necessary, but also sufficient for genericity. The proof is similar to the proof of the Prikry property.

Lemma 12. $\bigcup_n x_n = \kappa_V^{+\omega}$

Proof. Clearly $\bigcup_n x_n \subset \kappa_V^{+\omega}$. Suppose now that $\alpha < \kappa_V^{+\omega}$. Let $l < \omega$ be such that $\alpha < \kappa^{+l}$. For all $n \ge l$, let $A_n = \{x \in \mathcal{P}_{\kappa}(\kappa^{+n}) \mid \alpha \in x\} \in U_n$. By the above lemma for all large $n, x_n^* \in A_n$. That means that for all large $n, \alpha \in x_n^*$.

Let $\mu := \kappa_V^{+\omega+1}$.

Corollary 13. In V[G], for all $0 \le n < \omega$, $cf(\kappa_V^{+n}) = \omega$, and μ be comes the successor of κ

Proof. Every x_k^* is a set in V of size less than κ (although of course the sequence $\langle x_n^* \mid n < \omega \rangle$ is not in V). So for every $n < \omega$,

$$\beta_k^n := \sup(x_k^* \cap \kappa_V^{+n}) < \kappa_V^{+n}.$$

Then in V[G],

$$\kappa_V^{+n} = (\bigcup_k x_k) \cap \kappa_V^{+n} = \bigcup_k x_k \cap \kappa_V^{+n} = \sup_{k < \omega} \beta_k^n.$$

So, κ becomes a singular cardinal with cofinality ω , all of the κ_V^{+n} 's for n > 0 are collapsed to κ , and μ becomes the new cardinal successor of κ .